Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An In-Depth Comparison of s-t Reliability Algorithms over Uncertain Graphs (1904.05300v1)

Published 10 Apr 2019 in cs.SI and cs.DB

Abstract: Uncertain, or probabilistic, graphs have been increasingly used to represent noisy linked data in many emerging applications, and have recently attracted the attention of the database research community. A fundamental problem on uncertain graphs is the s-t reliability, which measures the probability that a target node t is reachable from a source node s in a probabilistic (or uncertain) graph, i.e., a graph where every edge is assigned a probability of existence. Due to the inherent complexity of the s-t reliability estimation problem (#P-hard), various sampling and indexing based efficient algorithms were proposed in the literature. However, since they have not been thoroughly compared with each other, it is not clear whether the later algorithm outperforms the earlier ones. More importantly, the comparison framework, datasets, and metrics were often not consistent (e.g., different convergence criteria were employed to find the optimal number of samples) across these works. We address this serious concern by re-implementing six state-of-the-art s-t reliability estimation methods in a common system and code base, using several medium and large-scale, real-world graph datasets, identical evaluation metrics, and query workloads. Through our systematic and in-depth analysis of experimental results, we report surprising findings, such as many follow-up algorithms can actually be several orders of magnitude inefficient, less accurate, and more memory intensive compared to the ones that were proposed earlier. We conclude by discussing our recommendations on the road ahead.

Citations (20)

Summary

We haven't generated a summary for this paper yet.