Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Class of Optimal Structures for Node Computations in Message Passing Algorithms (2009.02535v3)

Published 5 Sep 2020 in cs.IT, cs.AR, and math.IT

Abstract: Consider the computations at a node in a message passing algorithm. Assume that the node has incoming and outgoing messages $\mathbf{x} = (x_1, x_2, \ldots, x_n)$ and $\mathbf{y} = (y_1, y_2, \ldots, y_n)$, respectively. In this paper, we investigate a class of structures that can be adopted by the node for computing $\mathbf{y}$ from $\mathbf{x}$, where each $y_j, j = 1, 2, \ldots, n$ is computed via a binary tree with leaves $\mathbf{x}$ excluding $x_j$. We make three main contributions regarding this class of structures. First, we prove that the minimum complexity of such a structure is $3n - 6$, and if a structure has such complexity, its minimum latency is $\delta + \lceil \log(n-2{\delta}) \rceil$ with $\delta = \lfloor \log(n/2) \rfloor$, where the logarithm always takes base two. Second, we prove that the minimum latency of such a structure is $\lceil \log(n-1) \rceil$, and if a structure has such latency, its minimum complexity is $n \log(n-1)$ when $n-1$ is a power of two. Third, given $(n, \tau)$ with $\tau \geq \lceil \log(n-1) \rceil$, we propose a construction for a structure which we conjecture to have the minimum complexity among structures with latencies at most $\tau$. Our construction method runs in $O(n3 \log2(n))$ time, and the obtained structure has complexity at most (generally much smaller than) $n \lceil \log(n) \rceil - 2$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.