Sparse Euclidean Spanners with Tiny Diameter: A Tight Lower Bound (2112.09124v2)
Abstract: In STOC'95 [ADMSS'95] Arya et al. showed that any set of $n$ points in $\mathbb Rd$ admits a $(1+\epsilon)$-spanner with hop-diameter at most 2 (respectively, 3) and $O(n \log n)$ edges (resp., $O(n \log \log n)$ edges). They also gave a general upper bound tradeoff of hop-diameter at most $k$ and $O(n \alpha_k(n))$ edges, for any $k \ge 2$. The function $\alpha_k$ is the inverse of a certain Ackermann-style function at the $\lfloor k/2 \rfloor$th level of the primitive recursive hierarchy, where $\alpha_0(n) = \lceil n/2 \rceil$, $\alpha_1(n) = \left\lceil \sqrt{n} \right\rceil$, $\alpha_2(n) = \lceil \log{n} \rceil$, $\alpha_3(n) = \lceil \log\log{n} \rceil$, $\alpha_4(n) = \log* n$, $\alpha_5(n) = \lfloor \frac{1}{2} \log*n \rfloor$, \ldots. Roughly speaking, for $k \ge 2$ the function $\alpha_{k}$ is close to $\lfloor \frac{k-2}{2} \rfloor$-iterated log-star function, i.e., $\log$ with $\lfloor \frac{k-2}{2} \rfloor$ stars. Also, $\alpha_{2\alpha(n)+4}(n) \le 4$, where $\alpha(n)$ is the one-parameter inverse Ackermann function, which is an extremely slowly growing function. Whether or not this tradeoff is tight has remained open, even for the cases $k = 2$ and $k = 3$. Two lower bounds are known: The first applies only to spanners with stretch 1 and the second is sub-optimal and applies only to sufficiently large (constant) values of $k$. In this paper we prove a tight lower bound for any constant $k$: For any fixed $\epsilon > 0$, any $(1+\epsilon)$-spanner for the uniform line metric with hop-diameter at most $k$ must have at least $\Omega(n \alpha_k(n))$ edges.
- Hung Le (120 papers)
- Lazar Milenkovic (9 papers)
- Shay Solomon (55 papers)