Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Stellar scattering and the formation of exponential discs in self-gravitating systems (2009.01929v1)

Published 3 Sep 2020 in astro-ph.GA

Abstract: We show, using the N-body code GADGET-2, that stellar scattering by massive clumps can produce exponential discs, and the effectiveness of the process depends on the mass of scattering centres, as well as the stability of the galactic disc. Heavy, dense scattering centres in a less stable disc generate an exponential profile quickly, with a timescale shorter than 1 Gyr. The profile evolution due to scattering can make a near-exponential disc under various initial stellar distributions. This result supports analytic theories that predict the scattering processes always favour the zero entropy gradient solution to the Jeans/Poisson equations, whose profile is a near-exponential. Profile changes are accompanied by disc thickening, and a power-law increase in stellar velocity dispersion in both vertical and radial directions is also observed through the evolution. Close encounters between stars and clumps can produce abrupt changes in stellar orbits and shift stars radially. These events can make trajectories more eccentric, but many leave eccentricities little changed. On average, orbital eccentricities of stars increase moderately with time.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.