Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Recommendation with Auxiliary Item Relationships via Multi-Relational Transformer (2210.13572v2)

Published 24 Oct 2022 in cs.IR, cs.AI, and cs.LG

Abstract: Sequential Recommendation (SR) models user dynamics and predicts the next preferred items based on the user history. Existing SR methods model the 'was interacted before' item-item transitions observed in sequences, which can be viewed as an item relationship. However, there are multiple auxiliary item relationships, e.g., items from similar brands and with similar contents in real-world scenarios. Auxiliary item relationships describe item-item affinities in multiple different semantics and alleviate the long-lasting cold start problem in the recommendation. However, it remains a significant challenge to model auxiliary item relationships in SR. To simultaneously model high-order item-item transitions in sequences and auxiliary item relationships, we propose a Multi-relational Transformer capable of modeling auxiliary item relationships for SR (MT4SR). Specifically, we propose a novel self-attention module, which incorporates arbitrary item relationships and weights item relationships accordingly. Second, we regularize intra-sequence item relationships with a novel regularization module to supervise attentions computations. Third, for inter-sequence item relationship pairs, we introduce a novel inter-sequence related items modeling module. Finally, we conduct experiments on four benchmark datasets and demonstrate the effectiveness of MT4SR over state-of-the-art methods and the improvements on the cold start problem. The code is available at https://github.com/zfan20/MT4SR.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Ziwei Fan (22 papers)
  2. Zhiwei Liu (114 papers)
  3. Chen Wang (600 papers)
  4. Peijie Huang (2 papers)
  5. Hao Peng (291 papers)
  6. Philip S. Yu (592 papers)
Citations (4)