Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

Identifying microlensing events using neural networks (2008.11930v1)

Published 27 Aug 2020 in astro-ph.IM, astro-ph.EP, astro-ph.SR, and cs.LG

Abstract: Current gravitational microlensing surveys are observing hundreds of millions of stars in the Galactic bulge - which makes finding rare microlensing events a challenging tasks. In almost all previous works, microlensing events have been detected either by applying very strict selection cuts or manually inspecting tens of thousands of light curves. However, the number of microlensing events expected in the future space-based microlensing experiments forces us to consider fully-automated approaches. They are especially important for selecting binary-lens events that often exhibit complex light curve morphologies and are otherwise difficult to find. There are no dedicated selection algorithms for binary-lens events in the literature, which hampers their statistical studies. Here, we present two simple neural-network-based classifiers for detecting single and binary microlensing events. We demonstrate their robustness using OGLE-III and OGLE-IV data sets and show they perform well on microlensing events detected in data from the Zwicky Transient Facility (ZTF). Classifiers are able to correctly recognize ~98% of single-lens events and 80-85% of binary-lens events.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)