Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Character Labeling in Movie Videos: Data Resources and Self-supervised Feature Adaptation (2008.11289v2)

Published 25 Aug 2020 in cs.CV and eess.IV

Abstract: Robust face clustering is a vital step in enabling computational understanding of visual character portrayal in media. Face clustering for long-form content is challenging because of variations in appearance and lack of supporting large-scale labeled data. Our work in this paper focuses on two key aspects of this problem: the lack of domain-specific training or benchmark datasets, and adapting face embeddings learned on web images to long-form content, specifically movies. First, we present a dataset of over 169,000 face tracks curated from 240 Hollywood movies with weak labels on whether a pair of face tracks belong to the same or a different character. We propose an offline algorithm based on nearest-neighbor search in the embedding space to mine hard-examples from these tracks. We then investigate triplet-loss and multiview correlation-based methods for adapting face embeddings to hard-examples. Our experimental results highlight the usefulness of weakly labeled data for domain-specific feature adaptation. Overall, we find that multiview correlation-based adaptation yields more discriminative and robust face embeddings. Its performance on downstream face verification and clustering tasks is comparable to that of the state-of-the-art results in this domain. We also present the SAIL-Movie Character Benchmark corpus developed to augment existing benchmarks. It consists of racially diverse actors and provides face-quality labels for subsequent error analysis. We hope that the large-scale datasets developed in this work can further advance automatic character labeling in videos. All resources are available freely at https://sail.usc.edu/~ccmi/multiface.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Krishna Somandepalli (21 papers)
  2. Rajat Hebbar (12 papers)
  3. Shrikanth Narayanan (151 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.