Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Character Graph via Online Face Clustering for Movie Analysis (2007.14913v1)

Published 29 Jul 2020 in cs.CV and cs.MM

Abstract: An effective approach to automated movie content analysis involves building a network (graph) of its characters. Existing work usually builds a static character graph to summarize the content using metadata, scripts or manual annotations. We propose an unsupervised approach to building a dynamic character graph that captures the temporal evolution of character interaction. We refer to this as the character interaction graph(CIG). Our approach has two components:(i) an online face clustering algorithm that discovers the characters in the video stream as they appear, and (ii) simultaneous creation of a CIG using the temporal dynamics of the resulting clusters. We demonstrate the usefulness of the CIG for two movie analysis tasks: narrative structure (acts) segmentation, and major character retrieval. Our evaluation on full-length movies containing more than 5000 face tracks shows that the proposed approach achieves superior performance for both the tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Prakhar Kulshreshtha (4 papers)
  2. Tanaya Guha (30 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.