Hyperbolic Coxeter groups and minimal growth rates in dimensions four and five (2008.10961v3)
Abstract: For small $n$, the known compact hyperbolic $n$-orbifolds of minimal volume are intimately related to Coxeter groups of smallest rank. For $n=2$ and $3$, these Coxeter groups are given by the triangle group $[7,3]$ and the tetrahedral group $[3,5,3]$, and they are also distinguished by the fact that they have minimal growth rate among all cocompact hyperbolic Coxeter groups in $\hbox{Isom}\mathbb Hn$, respectively. In this work, we consider the cocompact Coxeter simplex group $G_4$ with Coxeter symbol $[5,3,3,3]$ in $\hbox{Isom}\mathbb H4$ and the cocompact Coxeter prism group $G_5$ based on $[5,3,3,3,3]$ in $\hbox{Isom}\mathbb H5$. Both groups are arithmetic and related to the fundamental group of the minimal volume arithmetic compact hyperbolic $n$-orbifold for $n=4$ and $5$, respectively. Here, we prove that the group $G_n$ is distinguished by having smallest growth rate among all Coxeter groups acting cocompactly on $\mathbb Hn$ for $n=4$ and $5$, respectively. The proof is based on combinatorial properties of compact hyperbolic Coxeter polyhedra, some partial classification results and certain monotonicity properties of growth rates of the associated Coxeter groups.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.