Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Online Learning for Cognitive Radar-Cellular Coexistence via Contextual Thompson Sampling (2008.10149v1)

Published 24 Aug 2020 in cs.IT, cs.LG, and math.IT

Abstract: This paper describes a sequential, or online, learning scheme for adaptive radar transmissions that facilitate spectrum sharing with a non-cooperative cellular network. First, the interference channel between the radar and a spatially distant cellular network is modeled. Then, a linear Contextual Bandit (CB) learning framework is applied to drive the radar's behavior. The fundamental trade-off between exploration and exploitation is balanced by a proposed Thompson Sampling (TS) algorithm, a pseudo-Bayesian approach which selects waveform parameters based on the posterior probability that a specific waveform is optimal, given discounted channel information as context. It is shown that the contextual TS approach converges more rapidly to behavior that minimizes mutual interference and maximizes spectrum utilization than comparable contextual bandit algorithms. Additionally, we show that the TS learning scheme results in a favorable SINR distribution compared to other online learning algorithms. Finally, the proposed TS algorithm is compared to a deep reinforcement learning model. We show that the TS algorithm maintains competitive performance with a more complex Deep Q-Network (DQN).

Citations (10)

Summary

We haven't generated a summary for this paper yet.