Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-constrained polynomial chaos expansion for scientific machine learning and uncertainty quantification (2402.15115v2)

Published 23 Feb 2024 in stat.ML, cs.LG, and physics.data-an

Abstract: We present a novel physics-constrained polynomial chaos expansion as a surrogate modeling method capable of performing both scientific machine learning (SciML) and uncertainty quantification (UQ) tasks. The proposed method possesses a unique capability: it seamlessly integrates SciML into UQ and vice versa, which allows it to quantify the uncertainties in SciML tasks effectively and leverage SciML for improved uncertainty assessment during UQ-related tasks. The proposed surrogate model can effectively incorporate a variety of physical constraints, such as governing partial differential equations (PDEs) with associated initial and boundary conditions constraints, inequality-type constraints (e.g., monotonicity, convexity, non-negativity, among others), and additional a priori information in the training process to supplement limited data. This ensures physically realistic predictions and significantly reduces the need for expensive computational model evaluations to train the surrogate model. Furthermore, the proposed method has a built-in uncertainty quantification (UQ) feature to efficiently estimate output uncertainties. To demonstrate the effectiveness of the proposed method, we apply it to a diverse set of problems, including linear/non-linear PDEs with deterministic and stochastic parameters, data-driven surrogate modeling of a complex physical system, and UQ of a stochastic system with parameters modeled as random fields.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. J. Kudela and R. Matousek, “Recent advances and applications of surrogate models for finite element method computations: A review,” Soft Computing, vol. 26, no. 24, pp. 13709–13733, 2022.
  2. H. Liu, Y.-S. Ong, and J. Cai, “A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design,” Structural and Multidisciplinary Optimization, vol. 57, pp. 393–416, 2018.
  3. J. N. Fuhg, A. Fau, and U. Nackenhorst, “State-of-the-art and comparative review of adaptive sampling methods for kriging,” Archives of Computational Methods in Engineering, vol. 28, pp. 2689–2747, 2021.
  4. S. Dutta and A. H. Gandomi, “Design of experiments for uncertainty quantification based on polynomial chaos expansion metamodels,” in Handbook of probabilistic models, pp. 369–381, Elsevier, 2020.
  5. H. Sharma, J. A. Gaffney, D. Tsapetis, and M. D. Shields, “Learning thermodynamically constrained equations of state with uncertainty,” arXiv preprint arXiv:2306.17004, 2023.
  6. L. Sun, H. Gao, S. Pan, and J.-X. Wang, “Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data,” Computer Methods in Applied Mechanics and Engineering, vol. 361, p. 112732, 2020.
  7. D. Xiu and G. E. Karniadakis, “The wiener–askey polynomial chaos for stochastic differential equations,” SIAM journal on scientific computing, vol. 24, no. 2, pp. 619–644, 2002.
  8. N. Luthen, S. Marelli, and B. Sudret, “Sparse polynomial chaos expansions: Literature survey and benchmark,” SIAM/ASA Journal on Uncertainty Quantification, vol. 9, no. 2, pp. 593–649, 2021.
  9. R. Ghanem and J. Red-Horse, “Polynomial chaos: modeling, estimation, and approximation,” Handbook of uncertainty quantification, vol. 1, p. 3, 2017.
  10. CRC press, 2020.
  11. Springer, 2006.
  12. Q. X. Lieu, K. T. Nguyen, K. D. Dang, S. Lee, J. Kang, and J. Lee, “An adaptive surrogate model to structural reliability analysis using deep neural network,” Expert Systems with Applications, vol. 189, p. 116104, 2022.
  13. A. Olivier, M. D. Shields, and L. Graham-Brady, “Bayesian neural networks for uncertainty quantification in data-driven materials modeling,” Computer methods in applied mechanics and engineering, vol. 386, p. 114079, 2021.
  14. C. Soize and R. Ghanem, “Physical systems with random uncertainties: chaos representations with arbitrary probability measure,” SIAM Journal on Scientific Computing, vol. 26, no. 2, pp. 395–410, 2004.
  15. R. G. Ghanem and P. D. Spanos, Stochastic finite elements: a spectral approach. Courier Corporation, 2003.
  16. B. J. Debusschere, H. N. Najm, P. P. Pébay, O. M. Knio, R. G. Ghanem, and O. P. Le Maı tre, “Numerical challenges in the use of polynomial chaos representations for stochastic processes,” SIAM journal on scientific computing, vol. 26, no. 2, pp. 698–719, 2004.
  17. D. Xiu and J. S. Hesthaven, “High-order collocation methods for differential equations with random inputs,” SIAM Journal on Scientific Computing, vol. 27, no. 3, pp. 1118–1139, 2005.
  18. A. Narayan and D. Xiu, “Stochastic collocation methods on unstructured grids in high dimensions via interpolation,” SIAM Journal on Scientific Computing, vol. 34, no. 3, pp. A1729–A1752, 2012.
  19. M. Berveiller, B. Sudret, and M. Lemaire, “Stochastic finite element: a non intrusive approach by regression,” Revue Européenne de Mécanique Numérique/European Journal of Computational Mechanics, vol. 15, no. 1-2-3, pp. 81–92, 2006.
  20. D. Xiu, “Efficient collocational approach for parametric uncertainty analysis,” Communications in computational physics, vol. 2, no. 2, pp. 293–309, 2007.
  21. D. Xiu, “Stochastic collocation methods: a survey,” Handbook of uncertainty quantification, pp. 699–716, 2016.
  22. B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” 2004.
  23. G. Blatman and B. Sudret, “Adaptive sparse polynomial chaos expansion based on least angle regression,” Journal of computational Physics, vol. 230, no. 6, pp. 2345–2367, 2011.
  24. R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society Series B: Statistical Methodology, vol. 58, no. 1, pp. 267–288, 1996.
  25. J. Zhang, X. Yue, J. Qiu, L. Zhuo, and J. Zhu, “Sparse polynomial chaos expansion based on bregman-iterative greedy coordinate descent for global sensitivity analysis,” Mechanical Systems and Signal Processing, vol. 157, p. 107727, 2021.
  26. B. Sudret, “Global sensitivity analysis using polynomial chaos expansions,” Reliability engineering & system safety, vol. 93, no. 7, pp. 964–979, 2008.
  27. L. Novák, “On distribution-based global sensitivity analysis by polynomial chaos expansion,” Computers & Structures, vol. 267, p. 106808, 2022.
  28. E. Torre, S. Marelli, P. Embrechts, and B. Sudret, “Data-driven polynomial chaos expansion for machine learning regression,” Journal of Computational Physics, vol. 388, pp. 601–623, 2019.
  29. G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics-informed machine learning,” Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.
  30. S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, “Scientific machine learning through physics–informed neural networks: Where we are and what’s next,” Journal of Scientific Computing, vol. 92, no. 3, p. 88, 2022.
  31. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational physics, vol. 378, pp. 686–707, 2019.
  32. Z. Hu, K. Shukla, G. E. Karniadakis, and K. Kawaguchi, “Tackling the curse of dimensionality with physics-informed neural networks,” arXiv preprint arXiv:2307.12306, 2023.
  33. D. Zhang, L. Lu, L. Guo, and G. E. Karniadakis, “Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems,” Journal of Computational Physics, vol. 397, p. 108850, 2019.
  34. L. Yang, X. Meng, and G. E. Karniadakis, “B-pinns: Bayesian physics-informed neural networks for forward and inverse pde problems with noisy data,” Journal of Computational Physics, vol. 425, p. 109913, 2021.
  35. Z. Zou, X. Meng, and G. E. Karniadakis, “Correcting model misspecification in physics-informed neural networks (pinns),” arXiv preprint arXiv:2310.10776, 2023.
  36. A. F. Psaros, X. Meng, Z. Zou, L. Guo, and G. E. Karniadakis, “Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons,” Journal of Computational Physics, vol. 477, p. 111902, 2023.
  37. L. P. Swiler, M. Gulian, A. L. Frankel, C. Safta, and J. D. Jakeman, “A survey of constrained gaussian process regression: Approaches and implementation challenges,” Journal of Machine Learning for Modeling and Computing, vol. 1, no. 2, 2020.
  38. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Machine learning of linear differential equations using gaussian processes,” Journal of Computational Physics, vol. 348, pp. 683–693, 2017.
  39. L. Novák, H. Sharma, and M. D. Shields, “Physics-informed polynomial chaos expansions,” arXiv preprint arXiv:2309.01697, 2023.
  40. H. Sharma, M. Shields, and L. Novak, “Constrained non-intrusive polynomial chaos expansion for physics-informed machine learning regression,” in 14th international conference on applications of statistics and probability in civil engineering, ICASP14, 2023.
  41. G. Blatman, Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis. PhD thesis, Clermont-Ferrand 2, 2009.
  42. M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code,” Technometrics, vol. 42, no. 1, pp. 55–61, 2000.
  43. D. Liu and Y. Wang, “A dual-dimer method for training physics-constrained neural networks with minimax architecture,” Neural Networks, vol. 136, pp. 112–125, 2021.
  44. I. M. Sobol’, “On sensitivity estimation for nonlinear mathematical models,” Matematicheskoe modelirovanie, vol. 2, no. 1, pp. 112–118, 1990.
  45. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al., “Scipy 1.0: fundamental algorithms for scientific computing in python,” Nature methods, vol. 17, no. 3, pp. 261–272, 2020.
  46. D. Tsapetis, M. D. Shields, D. G. Giovanis, A. Olivier, L. Novak, P. Chakroborty, H. Sharma, M. Chauhan, K. Kontolati, L. Vandanapu, D. Loukrezis, and M. Gardner, “Uqpy v4.1: Uncertainty quantification with python,” SoftwareX, vol. 24, p. 101561, 2023.
  47. M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, “The fenics project version 1.5,” Archive of numerical software, vol. 3, no. 100, 2015.
  48. L. Novák, M. D. Shields, V. Sadílek, and M. Vořechovský, “Active learning-based domain adaptive localized polynomial chaos expansion,” Mechanical Systems and Signal Processing, vol. 204, p. 110728, 2023.
  49. L. X. Benedict, K. P. Driver, S. Hamel, B. Militzer, T. Qi, A. A. Correa, A. Saul, and E. Schwegler, “Multiphase equation of state for carbon addressing high pressures and temperatures,” Physical Review B, vol. 89, no. 22, p. 224109, 2014.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Himanshu Sharma (36 papers)
  2. Lukáš Novák (7 papers)
  3. Michael D. Shields (41 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets