Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BOIL: Towards Representation Change for Few-shot Learning (2008.08882v2)

Published 20 Aug 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Model Agnostic Meta-Learning (MAML) is one of the most representative of gradient-based meta-learning algorithms. MAML learns new tasks with a few data samples using inner updates from a meta-initialization point and learns the meta-initialization parameters with outer updates. It has recently been hypothesized that representation reuse, which makes little change in efficient representations, is the dominant factor in the performance of the meta-initialized model through MAML in contrast to representation change, which causes a significant change in representations. In this study, we investigate the necessity of representation change for the ultimate goal of few-shot learning, which is solving domain-agnostic tasks. To this aim, we propose a novel meta-learning algorithm, called BOIL (Body Only update in Inner Loop), which updates only the body (extractor) of the model and freezes the head (classifier) during inner loop updates. BOIL leverages representation change rather than representation reuse. This is because feature vectors (representations) have to move quickly to their corresponding frozen head vectors. We visualize this property using cosine similarity, CKA, and empirical results without the head. BOIL empirically shows significant performance improvement over MAML, particularly on cross-domain tasks. The results imply that representation change in gradient-based meta-learning approaches is a critical component.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jaehoon Oh (18 papers)
  2. Hyungjun Yoo (1 paper)
  3. ChangHwan Kim (9 papers)
  4. Se-Young Yun (114 papers)
Citations (9)
Youtube Logo Streamline Icon: https://streamlinehq.com