Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Augmenting Neural Differential Equations to Model Unknown Dynamical Systems with Incomplete State Information (2008.08226v3)

Published 19 Aug 2020 in q-bio.NC, cs.LG, and physics.comp-ph

Abstract: Neural Ordinary Differential Equations replace the right-hand side of a conventional ODE with a neural net, which by virtue of the universal approximation theorem, can be trained to the representation of any function. When we do not know the function itself, but have state trajectories (time evolution) of the ODE system we can still train the neural net to learn the representation of the underlying but unknown ODE. However if the state of the system is incompletely known then the right-hand side of the ODE cannot be calculated. The derivatives to propagate the system are unavailable. We show that a specially augmented Neural ODE can learn the system when given incomplete state information. As a worked example we apply neural ODEs to the Lotka-Voltera problem of 3 species, rabbits, wolves, and bears. We show that even when the data for the bear time series is removed the remaining time series of the rabbits and wolves is sufficient to learn the dynamical system despite the missing the incomplete state information. This is surprising since a conventional ODE system cannot output the correct derivatives without the full state as the input. We implement augmented neural ODEs and differential equation solvers in the julia programming language.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Robert Strauss (1 paper)
Citations (3)

Summary

We haven't generated a summary for this paper yet.