A geodesic interior-point method for linear optimization over symmetric cones (2008.08047v3)
Abstract: We develop a new interior-point method (IPM) for symmetric-cone optimization, a common generalization of linear, second-order-cone, and semidefinite programming. In contrast to classical IPMs, we update iterates with a geodesic of the cone instead of the kernel of the linear constraints. This approach yields a primal-dual-symmetric, scale-invariant, and line-search-free algorithm that uses just half the variables of a standard primal-dual IPM. With elementary arguments, we establish polynomial-time convergence matching the standard square-root-n bound. Finally, we prove global convergence of a long-step variant and provide an implementation that supports all symmetric cones. For linear programming, our algorithms reduce to central-path tracking in the log domain.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.