Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Longitudinal Effects of Session-based Recommendations (2008.07226v1)

Published 17 Aug 2020 in cs.IR

Abstract: Session-based recommendation is a problem setting where the task of a recommender system is to make suitable item suggestions based only on a few observed user interactions in an ongoing session. The lack of long-term preference information about individual users in such settings usually results in a limited level of personalization, where a small set of popular items may be recommended to many users. This repeated exposure of such a subset of the items through the recommendations may in turn lead to a reinforcement effect over time, and to a system which is not able to help users discover new content anymore to the desirable extent. In this work, we investigate such potential longitudinal effects of session-based recommendations in a simulation-based approach. Specifically, we analyze to what extent algorithms of different types may lead to concentration effects over time. Our experiments in the music domain reveal that all investigated algorithms---both neural and heuristic ones---may lead to lower item coverage and to a higher concentration on a subset of the items. Additional simulation experiments however also indicate that relatively simple re-ranking strategies, e.g., by avoiding too many repeated recommendations in the music domain, may help to deal with this problem.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Andres Ferraro (17 papers)
  2. Dietmar Jannach (53 papers)
  3. Xavier Serra (82 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.