Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking Item Importance in Session-based Recommendation (2005.04456v1)

Published 9 May 2020 in cs.IR

Abstract: Session-based recommendation aims to predict users' based on anonymous sessions. Previous work mainly focuses on the transition relationship between items during an ongoing session. They generally fail to pay enough attention to the importance of the items in terms of their relevance to user's main intent. In this paper, we propose a Session-based Recommendation approach with an Importance Extraction Module, i.e., SR-IEM, that considers both a user's long-term and recent behavior in an ongoing session. We employ a modified self-attention mechanism to estimate item importance in a session, which is then used to predict user's long-term preference. Item recommendations are produced by combining the user's long-term preference and current interest as conveyed by the last interacted item. Experiments conducted on two benchmark datasets validate that SR-IEM outperforms the start-of-the-art in terms of Recall and MRR and has a reduced computational complexity.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhiqiang Pan (1 paper)
  2. Fei Cai (9 papers)
  3. Yanxiang Ling (1 paper)
  4. Maarten de Rijke (263 papers)
Citations (34)