Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the classical and quantum dynamics of a class of nonpolynomial oscillators (2008.07134v2)

Published 17 Aug 2020 in quant-ph and nlin.SI

Abstract: We consider two one dimensional nonlinear oscillators, namely (i) Higgs oscillator and (ii) a $k$-dependent nonpolynomial rational potential, where $k$ is the constant curvature of a Riemannian manifold. Both the systems are of position dependent mass form, ${\displaystyle m(x) = \frac{1}{(1 + k x2)2}}$, belonging to the quadratic Li$\acute{e}$nard type nonlinear oscillators. They admit different kinds of motions at the classical level. While solving the quantum versions of the systems, we consider a generalized position dependent mass Hamiltonian in which the ordering parameters of the mass term are treated as arbitrary. We observe that the quantum version of the Higgs oscillator is exactly solvable under appropriate restrictions of the ordering parameters, while the second nonlinear system is shown to be quasi exactly solvable using the Bethe ansatz method in which the arbitrariness of ordering parameters also plays an important role to obtain quasi-polynomial solutions. We extend the study to three dimensional generalizations of these nonlinear oscillators and obtain the exact solutions for the classical and quantum versions of the three dimensional Higgs oscillator. The three dimensional generalization of the quantum counterpart of the $k$-dependent nonpolynomial potential is found out to be quasi exactly solvable.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.