Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MIDAS: Multi-agent Interaction-aware Decision-making with Adaptive Strategies for Urban Autonomous Navigation (2008.07081v2)

Published 17 Aug 2020 in cs.LG, cs.RO, and stat.ML

Abstract: Autonomous navigation in crowded, complex urban environments requires interacting with other agents on the road. A common solution to this problem is to use a prediction model to guess the likely future actions of other agents. While this is reasonable, it leads to overly conservative plans because it does not explicitly model the mutual influence of the actions of interacting agents. This paper builds a reinforcement learning-based method named MIDAS where an ego-agent learns to affect the control actions of other cars in urban driving scenarios. MIDAS uses an attention-mechanism to handle an arbitrary number of other agents and includes a "driver-type" parameter to learn a single policy that works across different planning objectives. We build a simulation environment that enables diverse interaction experiments with a large number of agents and methods for quantitatively studying the safety, efficiency, and interaction among vehicles. MIDAS is validated using extensive experiments and we show that it (i) can work across different road geometries, (ii) results in an adaptive ego policy that can be tuned easily to satisfy performance criteria such as aggressive or cautious driving, (iii) is robust to changes in the driving policies of external agents, and (iv) is more efficient and safer than existing approaches to interaction-aware decision-making.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xiaoyi Chen (11 papers)
  2. Pratik Chaudhari (75 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.