Papers
Topics
Authors
Recent
2000 character limit reached

Exploiting Fully Convolutional Network and Visualization Techniques on Spontaneous Speech for Dementia Detection

Published 17 Aug 2020 in eess.AS and cs.SD | (2008.07052v1)

Abstract: In this paper, we exploit a Fully Convolutional Network (FCN) to analyze the audio data of spontaneous speech for dementia detection. A fully convolutional network accommodates speech samples with varying lengths, thus enabling us to analyze the speech sample without manual segmentation. Specifically, we first obtain the Mel Frequency Cepstral Coefficient (MFCC) feature map from each participant's audio data and convert the speech classification task on audio data to an image classification task on MFCC feature maps. Then, to solve the data insufficiency problem, we apply transfer learning by adopting a pre-trained backbone Convolutional Neural Network (CNN) model from the MobileNet architecture and the ImageNet dataset. We further build a convolutional layer to produce a heatmap using Otsu's method for visualization, enabling us to understand the impact of the time-series audio segments on the classification results. We demonstrate that our classification model achieves 66.7% over the testing dataset, 62.5% of the baseline model provided in the ADReSS challenge. Through the visualization technique, we can evaluate the impact of audio segments, such as filled pauses from the participants and repeated questions from the investigator, on the classification results.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.