Papers
Topics
Authors
Recent
Search
2000 character limit reached

Vectorized Hankel Lift: A Convex Approach for Blind Super-Resolution of Point Sources

Published 12 Aug 2020 in cs.IT and math.IT | (2008.05092v2)

Abstract: We consider the problem of resolving $ r$ point sources from $n$ samples at the low end of the spectrum when point spread functions (PSFs) are not known. Assuming that the spectrum samples of the PSFs lie in low dimensional subspace (let $s$ denote the dimension), this problem can be reformulated as a matrix recovery problem, followed by location estimation. By exploiting the low rank structure of the vectorized Hankel matrix associated with the target matrix, a convex approach called Vectorized Hankel Lift is proposed for the matrix recovery. It is shown that $n\gtrsim rs\log4 n$ samples are sufficient for Vectorized Hankel Lift to achieve the exact recovery. For the location retrieval from the matrix, applying the single snapshot MUSIC method within the vectorized Hankel lift framework corresponds to the spatial smoothing technique proposed to improve the performance of the MMV MUSIC for the direction-of-arrival (DOA) estimation.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.