Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast and Provable Algorithms for Spectrally Sparse Signal Reconstruction via Low-Rank Hankel Matrix Completion (1606.01567v1)

Published 5 Jun 2016 in cs.IT and math.IT

Abstract: A spectrally sparse signal of order $r$ is a mixture of $r$ damped or undamped complex sinusoids. This paper investigates the problem of reconstructing spectrally sparse signals from a random subset of $n$ regular time domain samples, which can be reformulated as a low rank Hankel matrix completion problem. We introduce an iterative hard thresholding (IHT) algorithm and a fast iterative hard thresholding (FIHT) algorithm for efficient reconstruction of spectrally sparse signals via low rank Hankel matrix completion. Theoretical recovery guarantees have been established for FIHT, showing that $O(r2\log2(n))$ number of samples are sufficient for exact recovery with high probability. Empirical performance comparisons establish significant computational advantages for IHT and FIHT. In particular, numerical simulations on $3$D arrays demonstrate the capability of FIHT on handling large and high-dimensional real data.

Citations (89)

Summary

We haven't generated a summary for this paper yet.