Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the mean Density of States of some matrices related to the beta ensembles and an application to the Toda lattice (2008.04604v3)

Published 11 Aug 2020 in math.SP, math-ph, math.MP, and math.PR

Abstract: In this manuscript we study tridiagonal random matrix models related to the classical $\beta$-ensembles (Gaussian, Laguerre, Jacobi) in the high temperature regime, i.e. when the size $N$ of the matrix tends to infinity with the constraint that $\beta N=2\alpha$ constant, $\alpha > 0$. We call these ensembles the Gaussian, Laguerre and Jacobi $\alpha$-ensembles and we prove the convergence of their empirical spectral distributions to their mean densities of states and we compute them explicitly. As an application we explicitly compute the mean density of states of the Lax matrix of the Toda lattice with periodic boundary conditions with respect to the Gibbs ensemble.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube