Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extended Particle Swarm Optimization (EPSO) for Feature Selection of High Dimensional Biomedical Data (2008.03530v1)

Published 8 Aug 2020 in cs.NE and cs.LG

Abstract: This paper proposes a novel Extended Particle Swarm Optimization model (EPSO) that potentially enhances the search process of PSO for optimization problem. Evidently, gene expression profiles are significantly important measurement factor in molecular biology that is used in medical diagnosis of cancer types. The challenge to certain classification methodologies for gene expression profiles lies in the thousands of features recorded for each sample. A modified Wrapper feature selection model is applied with the aim of addressing the gene classification challenge by replacing its randomness approach with EPSO and PSO respectively. EPSO is initializing the random size of the population and dividing them into two groups in order to promote the exploration and reduce the probability of falling in stagnation. Experimentally, EPSO has required less processing time to select the optimal features (average of 62.14 sec) than PSO (average of 95.72 sec). Furthermore, EPSO accuracy has provided better classification results (start from 54% to 100%) than PSO (start from 52% to 96%).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ali Hakem Alsaeedi (2 papers)
  2. Adil L. Albukhnefis (1 paper)
  3. Dhiah Al-Shammary (2 papers)
  4. Muntasir Al-Asfoor (4 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.