Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Orthogonally Initiated Particle Swarm Optimization with Advanced Mutation for Real-Parameter Optimization (2405.12542v1)

Published 21 May 2024 in cs.NE and math.OC

Abstract: This article introduces an enhanced particle swarm optimizer (PSO), termed Orthogonal PSO with Mutation (OPSO-m). Initially, it proposes an orthogonal array-based learning approach to cultivate an improved initial swarm for PSO, significantly boosting the adaptability of swarm-based optimization algorithms. The article further presents archive-based self-adaptive learning strategies, dividing the population into regular and elite subgroups. Each subgroup employs distinct learning mechanisms. The regular group utilizes efficient learning schemes derived from three unique archives, which categorize individuals based on their quality levels. Additionally, a mutation strategy is implemented to update the positions of elite individuals. Comparative studies are conducted to assess the effectiveness of these learning strategies in OPSO-m, evaluating its optimization capacity through exploration-exploitation dynamics and population diversity analysis. The proposed OPSO-m model is tested on real-parameter challenges from the CEC 2017 suite in 10, 30, 50, and 100-dimensional search spaces, with its results compared to contemporary state-of-the-art algorithms using a sensitivity metric. OPSO-m exhibits distinguished performance in the precision of solutions, rapidity of convergence, efficiency in search, and robust stability, thus highlighting its superior aptitude for resolving intricate optimization issues.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Indu Bala (5 papers)
  2. Dikshit Chauhan (8 papers)
  3. Lewis Mitchell (56 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets