Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Select, Extract and Generate: Neural Keyphrase Generation with Layer-wise Coverage Attention (2008.01739v2)

Published 4 Aug 2020 in cs.CL

Abstract: Natural language processing techniques have demonstrated promising results in keyphrase generation. However, one of the major challenges in \emph{neural} keyphrase generation is processing long documents using deep neural networks. Generally, documents are truncated before given as inputs to neural networks. Consequently, the models may miss essential points conveyed in the target document. To overcome this limitation, we propose \emph{SEG-Net}, a neural keyphrase generation model that is composed of two major components, (1) a selector that selects the salient sentences in a document and (2) an extractor-generator that jointly extracts and generates keyphrases from the selected sentences. SEG-Net uses Transformer, a self-attentive architecture, as the basic building block with a novel \emph{layer-wise} coverage attention to summarize most of the points discussed in the document. The experimental results on seven keyphrase generation benchmarks from scientific and web documents demonstrate that SEG-Net outperforms the state-of-the-art neural generative methods by a large margin.

Citations (34)

Summary

We haven't generated a summary for this paper yet.