Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Zero-Shot Domain Adaptation via Coupled Conditional Variational Autoencoders (2008.01214v1)

Published 3 Aug 2020 in cs.CV, cs.LG, and stat.ML

Abstract: Domain adaptation approaches aim to exploit useful information from the source domain where supervised learning examples are easier to obtain to address a learning problem in the target domain where there is no or limited availability of such examples. In classification problems, domain adaptation has been studied under varying supervised, unsupervised and semi-supervised conditions. However, a common situation when the labelled samples are available for a subset of target domain classes has been overlooked. In this paper, we formulate this particular domain adaptation problem within a generalized zero-shot learning framework by treating the labelled source domain samples as semantic representations for zero-shot learning. For this particular problem, neither conventional domain adaptation approaches nor zero-shot learning algorithms directly apply. To address this generalized zero-shot domain adaptation problem, we present a novel Coupled Conditional Variational Autoencoder (CCVAE) which can generate synthetic target domain features for unseen classes from their source domain counterparts. Extensive experiments have been conducted on three domain adaptation datasets including a bespoke X-ray security checkpoint dataset to simulate a real-world application in aviation security. The results demonstrate the effectiveness of our proposed approach both against established benchmarks and in terms of real-world applicability.

Citations (12)

Summary

We haven't generated a summary for this paper yet.