Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-Shot Deep Domain Adaptation (1707.01922v5)

Published 6 Jul 2017 in cs.CV

Abstract: Domain adaptation is an important tool to transfer knowledge about a task (e.g. classification) learned in a source domain to a second, or target domain. Current approaches assume that task-relevant target-domain data is available during training. We demonstrate how to perform domain adaptation when no such task-relevant target-domain data is available. To tackle this issue, we propose zero-shot deep domain adaptation (ZDDA), which uses privileged information from task-irrelevant dual-domain pairs. ZDDA learns a source-domain representation which is not only tailored for the task of interest but also close to the target-domain representation. Therefore, the source-domain task of interest solution (e.g. a classifier for classification tasks) which is jointly trained with the source-domain representation can be applicable to both the source and target representations. Using the MNIST, Fashion-MNIST, NIST, EMNIST, and SUN RGB-D datasets, we show that ZDDA can perform domain adaptation in classification tasks without access to task-relevant target-domain training data. We also extend ZDDA to perform sensor fusion in the SUN RGB-D scene classification task by simulating task-relevant target-domain representations with task-relevant source-domain data. To the best of our knowledge, ZDDA is the first domain adaptation and sensor fusion method which requires no task-relevant target-domain data. The underlying principle is not particular to computer vision data, but should be extensible to other domains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kuan-Chuan Peng (21 papers)
  2. Ziyan Wu (59 papers)
  3. Jan Ernst (8 papers)
Citations (83)

Summary

We haven't generated a summary for this paper yet.