Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pseudoinverse Graph Convolutional Networks: Fast Filters Tailored for Large Eigengaps of Dense Graphs and Hypergraphs (2008.00720v2)

Published 3 Aug 2020 in cs.LG and stat.ML

Abstract: Graph Convolutional Networks (GCNs) have proven to be successful tools for semi-supervised classification on graph-based datasets. We propose a new GCN variant whose three-part filter space is targeted at dense graphs. Examples include Gaussian graphs for 3D point clouds with an increased focus on non-local information, as well as hypergraphs based on categorical data. These graphs differ from the common sparse benchmark graphs in terms of the spectral properties of their graph Laplacian. Most notably we observe large eigengaps, which are unfavorable for popular existing GCN architectures. Our method overcomes these issues by utilizing the pseudoinverse of the Laplacian. Another key ingredient is a low-rank approximation of the convolutional matrix, ensuring computational efficiency and increasing accuracy at the same time. We outline how the necessary eigeninformation can be computed efficiently in each applications and discuss the appropriate choice of the only metaparameter, the approximation rank. We finally showcase our method's performance regarding runtime and accuracy in various experiments with real-world datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.