Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Structure-Adaptive Graph Learning for Robust Semi-Supervised Classification (1904.10146v2)

Published 23 Apr 2019 in cs.LG and stat.ML

Abstract: Graph Convolutional Neural Networks (GCNNs) are generalizations of CNNs to graph-structured data, in which convolution is guided by the graph topology. In many cases where graphs are unavailable, existing methods manually construct graphs or learn task-driven adaptive graphs. In this paper, we propose Graph Learning Neural Networks (GLNNs), which exploit the optimization of graphs (the adjacency matrix in particular) from both data and tasks. Leveraging on spectral graph theory, we propose the objective of graph learning from a sparsity constraint, properties of a valid adjacency matrix as well as a graph Laplacian regularizer via maximum a posteriori estimation. The optimization objective is then integrated into the loss function of the GCNN, which adapts the graph topology to not only labels of a specific task but also the input data. Experimental results show that our proposed GLNN outperforms state-of-the-art approaches over widely adopted social network datasets and citation network datasets for semi-supervised classification.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xiang Gao (210 papers)
  2. Wei Hu (309 papers)
  3. Zongming Guo (38 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.