Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 455 tok/s Pro
Kimi K2 194 tok/s Pro
2000 character limit reached

Quantum One-class Classification With a Distance-based Classifier (2007.16200v2)

Published 31 Jul 2020 in quant-ph and cs.LG

Abstract: The advancement of technology in Quantum Computing has brought possibilities for the execution of algorithms in real quantum devices. However, the existing errors in the current quantum hardware and the low number of available qubits make it necessary to use solutions that use fewer qubits and fewer operations, mitigating such obstacles. Hadamard Classifier (HC) is a distance-based quantum machine learning model for pattern recognition. We present a new classifier based on HC named Quantum One-class Classifier (QOCC) that consists of a minimal quantum machine learning model with fewer operations and qubits, thus being able to mitigate errors from NISQ (Noisy Intermediate-Scale Quantum) computers. Experimental results were obtained by running the proposed classifier on a quantum device and show that QOCC has advantages over HC.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.