Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Improvement for Capsule Networks using Depthwise Separable Convolution (2007.15167v2)

Published 30 Jul 2020 in cs.CV

Abstract: Capsule Networks face a critical problem in computer vision in the sense that the image background can challenge its performance, although they learn very well on training data. In this work, we propose to improve Capsule Networks' architecture by replacing the Standard Convolution with a Depthwise Separable Convolution. This new design significantly reduces the model's total parameters while increases stability and offers competitive accuracy. In addition, the proposed model on $64\times64$ pixel images outperforms standard models on $32\times32$ and $64\times64$ pixel images. Moreover, we empirically evaluate these models with Deep Learning architectures using state-of-the-art Transfer Learning networks such as Inception V3 and MobileNet V1. The results show that Capsule Networks can perform comparably against Deep Learning models. To the best of our knowledge, we believe that this is the first work on the integration of Depthwise Separable Convolution into Capsule Networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (1)

Summary

We haven't generated a summary for this paper yet.