Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepCaps: Going Deeper with Capsule Networks (1904.09546v1)

Published 21 Apr 2019 in cs.CV

Abstract: Capsule Network is a promising concept in deep learning, yet its true potential is not fully realized thus far, providing sub-par performance on several key benchmark datasets with complex data. Drawing intuition from the success achieved by Convolutional Neural Networks (CNNs) by going deeper, we introduce DeepCaps1, a deep capsule network architecture which uses a novel 3D convolution based dynamic routing algorithm. With DeepCaps, we surpass the state-of-the-art results in the capsule network domain on CIFAR10, SVHN and Fashion MNIST, while achieving a 68% reduction in the number of parameters. Further, we propose a class-independent decoder network, which strengthens the use of reconstruction loss as a regularization term. This leads to an interesting property of the decoder, which allows us to identify and control the physical attributes of the images represented by the instantiation parameters.

Citations (185)

Summary

We haven't generated a summary for this paper yet.