Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noise-Induced Barren Plateaus in Variational Quantum Algorithms (2007.14384v6)

Published 28 Jul 2020 in quant-ph and cs.LG

Abstract: Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise on NISQ devices places fundamental limitations on VQA performance. We rigorously prove a serious limitation for noisy VQAs, in that the noise causes the training landscape to have a barren plateau (i.e., vanishing gradient). Specifically, for the local Pauli noise considered, we prove that the gradient vanishes exponentially in the number of qubits $n$ if the depth of the ansatz grows linearly with $n$. These noise-induced barren plateaus (NIBPs) are conceptually different from noise-free barren plateaus, which are linked to random parameter initialization. Our result is formulated for a generic ansatz that includes as special cases the Quantum Alternating Operator Ansatz and the Unitary Coupled Cluster Ansatz, among others. For the former, our numerical heuristics demonstrate the NIBP phenomenon for a realistic hardware noise model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (102)
  1. J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum 2, 79 (2018).
  2. M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio,  and Patrick J Coles, “Variational quantum algorithms,” arXiv preprint arXiv:2012.09265  (2020a).
  3. Suguru Endo, Zhenyu Cai, Simon C Benjamin,  and Xiao Yuan, “Hybrid quantum-classical algorithms and quantum error mitigation,” arXiv preprint arXiv:2011.01382  (2020).
  4. Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek,  and Alán Aspuru-Guzik, “Noisy intermediate-scale quantum (nisq) algorithms,” arXiv preprint arXiv:2101.08448  (2021).
  5. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik,  and J. L. O’Brien, “A variational eigenvalue solver on a photonic quantum processor,” Nature Communications 5, 4213 (2014).
  6. Jarrod R McClean, Jonathan Romero, Ryan Babbush,  and Alán Aspuru-Guzik, “The theory of variational hybrid quantum-classical algorithms,” New Journal of Physics 18, 023023 (2016).
  7. Bela Bauer, Dave Wecker, Andrew J Millis, Matthew B Hastings,  and Matthias Troyer, “Hybrid quantum-classical approach to correlated materials,” Physical Review X 6, 031045 (2016).
  8. Tyson Jones, Suguru Endo, Sam McArdle, Xiao Yuan,  and Simon C Benjamin, “Variational quantum algorithms for discovering hamiltonian spectra,” Physical Review A 99, 062304 (2019).
  9. Ying Li and Simon C Benjamin, “Efficient variational quantum simulator incorporating active error minimization,” Physical Review X 7, 021050 (2017).
  10. Cristina Cirstoiu, Zoe Holmes, Joseph Iosue, Lukasz Cincio, Patrick J Coles,  and Andrew Sornborger, “Variational fast forwarding for quantum simulation beyond the coherence time,” npj Quantum Information 6, 1–10 (2020).
  11. K. Heya, K. M. Nakanishi, K. Mitarai,  and K. Fujii, “Subspace variational quantum simulator,”  arXiv:1904.08566 [quant-ph] .
  12. Xiao Yuan, Suguru Endo, Qi Zhao, Ying Li,  and Simon C Benjamin, “Theory of variational quantum simulation,” Quantum 3, 191 (2019).
  13. E. Farhi, J. Goldstone,  and S. Gutmann, “A quantum approximate optimization algorithm,”  arXiv:1411.4028 [quant-ph] .
  14. Z. Wang, S. Hadfield, Z. Jiang,  and E. G. Rieffel, “Quantum approximate optimization algorithm for MaxCut: A fermionic view,” Phys. Rev. A 97, 022304 (2018a).
  15. G. E. Crooks, “Performance of the quantum approximate optimization algorithm on the maximum cut problem,”  arXiv:1811.08419 [quant-ph] .
  16. Carlos Bravo-Prieto, Ryan LaRose, M. Cerezo, Yigit Subasi, Lukasz Cincio,  and Patrick J. Coles, “Variational quantum linear solver: A hybrid algorithm for linear systems,” arXiv:1909.05820  (2019).
  17. X. Xu, J. Sun, S. Endo, Y. Li, S. C. Benjamin,  and X. Yuan, “Variational algorithms for linear algebra,”  arXiv:1909.03898 [quant-ph] .
  18. Bálint Koczor, Suguru Endo, Tyson Jones, Yuichiro Matsuzaki,  and Simon C Benjamin, “Variational-state quantum metrology,” New Journal of Physics  (2020).
  19. Johannes Jakob Meyer, Johannes Borregaard,  and Jens Eisert, “A variational toolbox for quantum multi-parameter estimation,” arXiv preprint arXiv:2006.06303  (2020).
  20. Eric Anschuetz, Jonathan Olson, Alán Aspuru-Guzik,  and Yudong Cao, “Variational quantum factoring,” in Quantum Technology and Optimization Problems (Springer International Publishing, Cham, 2019) pp. 74–85.
  21. S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger,  and P. J. Coles, “Quantum-assisted quantum compiling,” Quantum 3, 140 (2019).
  22. Kunal Sharma, Sumeet Khatri, Marco Cerezo,  and Patrick Coles, “Noise resilience of variational quantum compiling,” New Journal of Physics  (2020a).
  23. T. Jones and S. C Benjamin, “Quantum compilation and circuit optimisation via energy dissipation,”  arXiv:1811.03147 [quant-ph] .
  24. A. Arrasmith, L. Cincio, A. T. Sornborger, W. H. Zurek,  and P. J. Coles, “Variational consistent histories as a hybrid algorithm for quantum foundations,” Nature communications 10, 3438 (2019).
  25. Marco Cerezo, Alexander Poremba, Lukasz Cincio,  and Patrick J Coles, “Variational quantum fidelity estimation,” Quantum 4, 248 (2020b).
  26. M Cerezo, Kunal Sharma, Andrew Arrasmith,  and Patrick J Coles, “Variational quantum state eigensolver,” arXiv preprint arXiv:2004.01372  (2020c).
  27. Ryan LaRose, Arkin Tikku, Étude O’Neel-Judy, Lukasz Cincio,  and Patrick J Coles, “Variational quantum state diagonalization,” npj Quantum Information 5, 1–10 (2019).
  28. Guillaume Verdon, Jacob Marks, Sasha Nanda, Stefan Leichenauer,  and Jack Hidary, “Quantum hamiltonian-based models and the variational quantum thermalizer algorithm,” arXiv preprint arXiv:1910.02071  (2019a).
  29. Peter D Johnson, Jonathan Romero, Jonathan Olson, Yudong Cao,  and Alán Aspuru-Guzik, “QVECTOR: an algorithm for device-tailored quantum error correction,” arXiv:1711.02249  (2017).
  30. Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush,  and Hartmut Neven, “Barren plateaus in quantum neural network training landscapes,” Nature communications 9, 4812 (2018).
  31. Zoe Holmes, Kunal Sharma, M. Cerezo,  and Patrick J Coles, “Connecting ansatz expressiblity to gradient magnitudes and barren plateaus,” arXiv preprint arXiv:2101.02138  (2021).
  32. Kunal Sharma, M Cerezo, Lukasz Cincio,  and Patrick J Coles, “Trainability of dissipative perceptron-based quantum neural networks,” arXiv preprint arXiv:2005.12458  (2020b).
  33. M Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio,  and Patrick J Coles, “Cost-function-dependent barren plateaus in shallow quantum neural networks,” arXiv preprint arXiv:2001.00550  (2020d).
  34. Carlos Ortiz Marrero, Mária Kieferová,  and Nathan Wiebe, “Entanglement induced barren plateaus,” arXiv preprint arXiv:2010.15968  (2020).
  35. Taylor L Patti, Khadijeh Najafi, Xun Gao,  and Susanne F Yelin, “Entanglement devised barren plateau mitigation,” arXiv preprint arXiv:2012.12658  (2020).
  36. Tyler Volkoff and Patrick J Coles, “Large gradients via correlation in random parameterized quantum circuits,” Quantum Science and Technology  (2021).
  37. M Cerezo and Patrick J Coles, “Higher order derivatives of quantum neural networks with barren plateaus,” Quantum Science and Technology 6, 035006 (2021).
  38. Andrew Arrasmith, M. Cerezo, Piotr Czarnik, Lukasz Cincio,  and Patrick J Coles, “Effect of barren plateaus on gradient-free optimization,” arXiv preprint arXiv:2011.12245  (2020a).
  39. Alexey Uvarov and Jacob Biamonte, “On barren plateaus and cost function locality in variational quantum algorithms,” arXiv preprint arXiv:2011.10530  (2020).
  40. Guillaume Verdon, Michael Broughton, Jarrod R McClean, Kevin J Sung, Ryan Babbush, Zhang Jiang, Hartmut Neven,  and Masoud Mohseni, “Learning to learn with quantum neural networks via classical neural networks,” arXiv preprint arXiv:1907.05415  (2019b).
  41. Andrea Skolik, Jarrod R McClean, Masoud Mohseni, Patrick van der Smagt,  and Martin Leib, “Layerwise learning for quantum neural networks,” arXiv preprint arXiv:2006.14904  (2020).
  42. Jeffrey Marshall, Filip Wudarski, Stuart Hadfield,  and Tad Hogg, “Characterizing local noise in QAOA circuits,” IOP SciNotes 1, 025208 (2020).
  43. Laura Gentini, Alessandro Cuccoli, Stefano Pirandola, Paola Verrucchi,  and Leonardo Banchi, “Noise-resilient variational hybrid quantum-classical optimization,” Physical Review A 102, 052414 (2020).
  44. Edward Farhi and Aram W Harrow, “Quantum supremacy through the quantum approximate optimization algorithm,” arXiv preprint arXiv:1602.07674  (2016).
  45. Jonas M Kübler, Andrew Arrasmith, Lukasz Cincio,  and Patrick J Coles, “An adaptive optimizer for measurement-frugal variational algorithms,” Quantum 4, 263 (2020).
  46. Andrew Arrasmith, Lukasz Cincio, Rolando D Somma,  and Patrick J Coles, “Operator sampling for shot-frugal optimization in variational algorithms,” arXiv preprint arXiv:2004.06252  (2020b).
  47. Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D Johnson, Mária Kieferová, Ian D Kivlichan, Tim Menke, Borja Peropadre, Nicolas PD Sawaya, et al., “Quantum chemistry in the age of quantum computing,” Chemical reviews 119, 10856–10915 (2019).
  48. Rodney J Bartlett and Monika Musiał, “Coupled-cluster theory in quantum chemistry,” Reviews of Modern Physics 79, 291 (2007).
  49. Joonho Lee, William J Huggins, Martin Head-Gordon,  and K Birgitta Whaley, “Generalized unitary coupled cluster wave functions for quantum computation,” Journal of chemical theory and computation 15, 311–324 (2018).
  50. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow,  and J. M. Gambetta, “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,” Nature 549, 242 (2017).
  51. Frank Arute et al., “Hartree-fock on a superconducting qubit quantum computer,” Science 369, 1084–1089 (2020a).
  52. Frank Arute et al., “Quantum approximate optimization of non-planar graph problems on a planar superconducting processor,” arXiv preprint arXiv:2004.04197  (2020b).
  53. Dave Wecker, Matthew B Hastings,  and Matthias Troyer, “Progress towards practical quantum variational algorithms,” Physical Review A 92, 042303 (2015).
  54. Maria Schuld, Ilya Sinayskiy,  and Francesco Petruccione, “The quest for a quantum neural network,” Quantum Information Processing 13, 2567–2586 (2014).
  55. Maria Schuld, Ilya Sinayskiy,  and Francesco Petruccione, “An introduction to quantum machine learning,” Contemporary Physics 56, 172–185 (2015).
  56. Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe,  and Seth Lloyd, “Quantum machine learning,” Nature 549, 195–202 (2017).
  57. Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne, Robert Salzmann, Daniel Scheiermann,  and Ramona Wolf, “Training deep quantum neural networks,” Nature Communications 11, 1–6 (2020).
  58. Bryan O’Gorman, William J Huggins, Eleanor G Rieffel,  and K Birgitta Whaley, “Generalized swap networks for near-term quantum computing,” arXiv preprint arXiv:1905.05118  (2019).
  59. Zhihui Wang, Stuart Hadfield, Zhang Jiang,  and Eleanor G. Rieffel, “Quantum approximate optimization algorithm for maxcut: A fermionic view,” Phys. Rev. A 97, 022304 (2018b).
  60. Matthew B Hastings, “Classical and quantum bounded depth approximation algorithms,” arXiv preprint arXiv:1905.07047  (2019).
  61. Zhang Jiang, Eleanor G Rieffel,  and Zhihui Wang, “Near-optimal quantum circuit for grover’s unstructured search using a transverse field,” Physical Review A 95, 062317 (2017).
  62. V. Akshay, H. Philathong, M. E. S. Morales,  and J. D. Biamonte, “Reachability deficits in quantum approximate optimization,” Phys. Rev. Lett. 124, 090504 (2020).
  63. Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon C Benjamin,  and Xiao Yuan, “Quantum computational chemistry,” Reviews of Modern Physics 92, 015003 (2020).
  64. Jonathan Romero, Ryan Babbush, Jarrod R McClean, Cornelius Hempel, Peter J Love,  and Alán Aspuru-Guzik, “Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz,” Quantum Science and Technology 4, 014008 (2018).
  65. Gerardo Ortiz, James E Gubernatis, Emanuel Knill,  and Raymond Laflamme, “Quantum algorithms for fermionic simulations,” Physical Review A 64, 022319 (2001).
  66. Sergey B Bravyi and Alexei Yu Kitaev, “Fermionic quantum computation,” Annals of Physics 298, 210–226 (2002).
  67. Marcel Nooijen, “Can the eigenstates of a many-body hamiltonian be represented exactly using a general two-body cluster expansion?” Physical review letters 84, 2108 (2000).
  68. Wen Wei Ho and Timothy H Hsieh, “Efficient variational simulation of non-trivial quantum states,” SciPost Phys 6, 029 (2019).
  69. Chris Cade, Lana Mineh, Ashley Montanaro,  and Stasja Stanisic, “Strategies for solving the fermi-hubbard model on near-term quantum computers,” Physical Review B 102, 235122 (2020).
  70. P Erdos and A Renyi, “On random graphs i,” Publ. math. debrecen 6, 18 (1959).
  71. Michel X Goemans and David P Williamson, “Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,” Journal of the ACM (JACM) 42, 1115–1145 (1995).
  72. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan,  and Mario Szegedy, “Proof verification and the hardness of approximation problems,” Journal of the ACM (JACM) 45, 501–555 (1998).
  73. Johan Håstad, “Some optimal inapproximability results,” Journal of the ACM (JACM) 48, 798–859 (2001).
  74. Petar Jurcevic, Ali Javadi-Abhari, Lev S Bishop, Isaac Lauer, Daniela F Bogorin, Markus Brink, Lauren Capelluto, Oktay Günlük, Toshinari Itoko, Naoki Kanazawa, et al., “Demonstration of quantum volume 64 on a superconducting quantum computing system,” Quantum Science and Technology 6, 025020 (2021).
  75. John A Nelder and Roger Mead, “A simplex method for function minimization,” The computer journal 7, 308–313 (1965).
  76. Bálint Koczor and Simon C Benjamin, “Quantum analytic descent,” arXiv preprint arXiv:2008.13774  (2020).
  77. Piotr Czarnik, Andrew Arrasmith, Patrick J Coles,  and Lukasz Cincio, “Error mitigation with clifford quantum-circuit data,” arXiv preprint arXiv:2005.10189  (2020).
  78. Ashley Montanaro and Stasja Stanisic, “Error mitigation by training with fermionic linear optics,” arXiv preprint arXiv:2102.02120  (2021).
  79. Joseph Vovrosh, Kiran E Khosla, Sean Greenaway, Christopher Self, Myungshik Kim,  and Johannes Knolle, “Efficient mitigation of depolarizing errors in quantum simulations,” arXiv preprint arXiv:2101.01690  (2021).
  80. Eliott Rosenberg, Paul Ginsparg,  and Peter L. McMahon, “Experimental error mitigation using linear rescaling for variational quantum eigensolving with up to 20 qubits,”  (2021), arXiv:2106.01264 [quant-ph] .
  81. Andre He, Benjamin Nachman, Wibe A. de Jong,  and Christian W. Bauer, “Zero-noise extrapolation for quantum-gate error mitigation with identity insertions,” Phys. Rev. A 102, 012426 (2020).
  82. Andrew Shaw, “Classical-quantum noise mitigation for nisq hardware,” arXiv preprint arXiv:2105.08701  (2021).
  83. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Andreas Bengtsson, Sergio Boixo, Michael Broughton, Bob B Buckley, et al., “Observation of separated dynamics of charge and spin in the fermi-hubbard model,” arXiv preprint arXiv:2010.07965  (2020c).
  84. M Bilkis, M Cerezo, Guillaume Verdon, Patrick J Coles,  and Lukasz Cincio, “A semi-agnostic ansatz with variable structure for quantum machine learning,” arXiv preprint arXiv:2103.06712  (2021).
  85. Harper R Grimsley, Sophia E Economou, Edwin Barnes,  and Nicholas J Mayhall, “An adaptive variational algorithm for exact molecular simulations on a quantum computer,” Nature communications 10, 1–9 (2019).
  86. Ho Lun Tang, VO Shkolnikov, George S Barron, Harper R Grimsley, Nicholas J Mayhall, Edwin Barnes,  and Sophia E Economou, “qubit-adapt-vqe: An adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor,” PRX Quantum 2, 020310 (2021).
  87. Zi-Jian Zhang, Thi Ha Kyaw, Jakob Kottmann, Matthias Degroote,  and Alan Aspuru-Guzik, “Mutual information-assisted adaptive variational quantum eigensolver,” Quantum Science and Technology  (2021).
  88. Arthur G Rattew, Shaohan Hu, Marco Pistoia, Richard Chen,  and Steve Wood, “A domain-agnostic, noise-resistant, hardware-efficient evolutionary variational quantum eigensolver,” arXiv preprint arXiv:1910.09694  (2019).
  89. D Chivilikhin, A Samarin, V Ulyantsev, I Iorsh, AR Oganov,  and O Kyriienko, “Mog-vqe: Multiobjective genetic variational quantum eigensolver,” arXiv preprint arXiv:2007.04424  (2020).
  90. Lukasz Cincio, Kenneth Rudinger, Mohan Sarovar,  and Patrick J Coles, “Machine learning of noise-resilient quantum circuits,” PRX Quantum 2, 010324 (2021).
  91. L. Cincio, Y. Subaşı, A. T. Sornborger,  and P. J. Coles, “Learning the quantum algorithm for state overlap,” New Journal of Physics 20, 113022 (2018).
  92. Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh,  and Dacheng Tao, “Quantum circuit architecture search: error mitigation and trainability enhancement for variational quantum solvers,” arXiv preprint arXiv:2010.10217  (2020).
  93. Christoph Hirche, Cambyse Rouzé,  and Daniel Stilck França, “On contraction coefficients, partial orders and approximation of capacities for quantum channels,” Quantum 6, 862 (2022).
  94. Bernhard Baumgartner, “An inequality for the trace of matrix products, using absolute values,” arXiv preprint arXiv:1106.6189  (2011).
  95. Jun Li, Xiaodong Yang, Xinhua Peng,  and Chang-Pu Sun, “Hybrid quantum-classical approach to quantum optimal control,” Physical Review Letters 118, 150503 (2017).
  96. Masanori Ohya and Dénes Petz, Quantum entropy and its use (Springer Science & Business Media, 2004).
  97. Robin Blume-Kohout, John King Gamble, Erik Nielsen, Kenneth Rudinger, Jonathan Mizrahi, Kevin Fortier,  and Peter Maunz, “Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography,” Nature communications 8, 1–13 (2017).
  98. Erik Nielsen, Kenneth Rudinger, Timothy Proctor, Antonio Russo, Kevin Young,  and Robin Blume-Kohout, “Probing quantum processor performance with pyGSTi,” Quantum Science and Technology 5, 044002 (2020).
  99. Alexander Müller-Hermes, Daniel Stilck França,  and Michael M Wolf, “Relative entropy convergence for depolarizing channels,” Journal of Mathematical Physics 57, 022202 (2016).
  100. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010).
  101. M. M. Wilde, Quantum Information Theory, 2nd ed. (Cambridge University Press, 2017).
  102. Sumeet Khatri and Mark M Wilde, “Principles of quantum communication theory: A modern approach,” arXiv preprint arXiv:2011.04672  (2020).
Citations (592)

Summary

  • The paper establishes that local noise causes exponential gradient decay, creating barren plateaus that hinder the trainability of VQAs.
  • It derives analytical bounds showing gradient magnitudes diminish with circuit depth and qubit count, with cost functions concentrating around maximally mixed states.
  • The work demonstrates that even correlated parameters and measurement noise do not mitigate barren plateaus, emphasizing the need for low-depth, hardware-efficient ansatz designs.

Noise-Induced Barren Plateaus in Variational Quantum Algorithms

The paper "Noise-induced Barren Plateaus in Variational Quantum Algorithms" by Wang et al. presents a rigorous analysis of how noise affects the trainability of Variational Quantum Algorithms (VQAs) on Noisy Intermediate-Scale Quantum (NISQ) devices. Specifically, the paper establishes that local noise can lead to barren plateaus in the training landscape, characterized by vanishing gradients, a phenomenon that the authors refer to as Noise-Induced Barren Plateaus (NIBPs).

Summary of Results

  1. Analytical Bounds on Gradients:

The authors derive an upper bound for the partial derivatives of the noisy cost function, showing that the gradient magnitude decays exponentially with both the depth of the quantum circuit and the number of qubits. This decay suggests that NIBPs impose significant challenges for scaling VQAs to larger problem sizes.

  1. Concentration of Cost Functions:

It is shown that the value of the noisy cost function concentrates around the value it would have if the state was maximally mixed, as the number of qubits increases. This concentration occurs at exponential rates under conditions where the circuit depth scales linearly with the number of qubits.

  1. Extensions and Robustness:

The paper extends to cases of degenerate (correlated) parameters and shows that such correlations do not mitigate NIBPs. The authors also provide results under measurement noise conditions, indicating that cost functions involving global observables exacerbate the NIBP issue.

  1. Application to Specific Algorithms:
  • Quantum Approximate Optimization Algorithm (QAOA): For the QAOA, the compilation overhead associated with problem Hamiltonians, such as MaxCut, can result in circuit depths which inherently lead to NIBPs.
  • Unitary Coupled Cluster (UCC) Ansatz: For quantum chemistry problems, the implementation of UCC using 1-D connectivity and SWAP networks results in depths that imply NIBPs for generalized UCC forms.
  1. Numerical and Hardware Demonstrations:

The theoretical findings are supported by numerical simulations using realistic noise models from IBM's superconducting qubit devices. These simulations show performance drops due to exponential concentration and gradient decays.

  1. Implications for Quantum Algorithms:

The paper emphasizes that any meaningful quantum speedup using VQAs requires avoiding exponential gradient decay. This underscores the importance of reducing circuit depth to be less than linear in qubit numbers or significantly lowering noise levels.

Theoretical Implications

The results suggest fundamental limitations on the scalability and applicability of VQAs in the NISQ era. The insights into NIBPs call for careful design of quantum circuits that can evade excessive depths and identify techniques that manage noise more effectively. Furthermore, the work highlights the necessity for exploring shor-depth, hardware-efficient ansatzes that can circumvent both noise-free and noise-induced barren plateaus.

Future Directions

Research should focus on adaptive ansatz designs catering to specific task requirements and problem instances, particularly those that inherently demand less circuit depth. Moreover, exploring advanced error mitigation or correction schemes that can address NIBPs will be crucial for realizing practical quantum advantage using VQAs.

This work serves as a critical reference for researchers aiming to optimize VQAs and lays the groundwork for further studies on the impact of noise on quantum algorithm trainability. The proposed framework and analytical techniques have broad implications across the spectrum of quantum computing applications.

Youtube Logo Streamline Icon: https://streamlinehq.com