Papers
Topics
Authors
Recent
Search
2000 character limit reached

Unknotting numbers of 2-spheres in the 4-sphere

Published 26 Jul 2020 in math.GT | (2007.13244v2)

Abstract: We compare two naturally arising notions of unknotting number for 2-spheres in the 4-sphere: namely, the minimal number of 1-handle stabilizations needed to obtain an unknotted surface, and the minimal number of Whitney moves required in a regular homotopy to the unknotted 2-sphere. We refer to these invariants as the stabilization number and the Casson-Whitney number of the sphere, respectively. Using both algebraic and geometric techniques, we show that the stabilization number is bounded above by one more than the Casson-Whitney number. We also provide explicit families of spheres for which these invariants are equal, as well as families for which they are distinct. Furthermore, we give additional bounds for both invariants, concrete examples of their non-additivity, and applications to classical unknotting number of 1-knots.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.