Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Duluth at SemEval-2019 Task 6: Lexical Approaches to Identify and Categorize Offensive Tweets (2007.12949v1)

Published 25 Jul 2020 in cs.CL

Abstract: This paper describes the Duluth systems that participated in SemEval--2019 Task 6, Identifying and Categorizing Offensive Language in Social Media (OffensEval). For the most part these systems took traditional Machine Learning approaches that built classifiers from lexical features found in manually labeled training data. However, our most successful system for classifying a tweet as offensive (or not) was a rule-based black--list approach, and we also experimented with combining the training data from two different but related SemEval tasks. Our best systems in each of the three OffensEval tasks placed in the middle of the comparative evaluation, ranking 57th of 103 in task A, 39th of 75 in task B, and 44th of 65 in task C.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Ted Pedersen (16 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.