Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Principal Regression for High Dimensional Covariance Matrices (2007.12740v1)

Published 24 Jul 2020 in stat.ME

Abstract: This manuscript presents an approach to perform generalized linear regression with multiple high dimensional covariance matrices as the outcome. Model parameters are proposed to be estimated by maximizing a pseudo-likelihood. When the data are high dimensional, the normal likelihood function is ill-posed as the sample covariance matrix is rank-deficient. Thus, a well-conditioned linear shrinkage estimator of the covariance matrix is introduced. With multiple covariance matrices, the shrinkage coefficients are proposed to be common across matrices. Theoretical studies demonstrate that the proposed covariance matrix estimator is optimal achieving the uniformly minimum quadratic loss asymptotically among all linear combinations of the identity matrix and the sample covariance matrix. Under regularity conditions, the proposed estimator of the model parameters is consistent. The superior performance of the proposed approach over existing methods is illustrated through simulation studies. Implemented to a resting-state functional magnetic resonance imaging study acquired from the Alzheimer's Disease Neuroimaging Initiative, the proposed approach identified a brain network within which functional connectivity is significantly associated with Apolipoprotein E $\varepsilon$4, a strong genetic marker for Alzheimer's disease.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.