Papers
Topics
Authors
Recent
Search
2000 character limit reached

Defining quantum divergences via convex optimization

Published 24 Jul 2020 in quant-ph and math.OC | (2007.12576v2)

Abstract: We introduce a new quantum R\'enyi divergence $D{#}_{\alpha}$ for $\alpha \in (1,\infty)$ defined in terms of a convex optimization program. This divergence has several desirable computational and operational properties such as an efficient semidefinite programming representation for states and channels, and a chain rule property. An important property of this new divergence is that its regularization is equal to the sandwiched (also known as the minimal) quantum R\'enyi divergence. This allows us to prove several results. First, we use it to get a converging hierarchy of upper bounds on the regularized sandwiched $\alpha$-R\'enyi divergence between quantum channels for $\alpha > 1$. Second it allows us to prove a chain rule property for the sandwiched $\alpha$-R\'enyi divergence for $\alpha > 1$ which we use to characterize the strong converse exponent for channel discrimination. Finally it allows us to get improved bounds on quantum channel capacities.

Citations (34)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.