Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The expressive power of kth-order invariant graph networks (2007.12035v1)

Published 23 Jul 2020 in cs.LG, math.CO, and stat.ML

Abstract: The expressive power of graph neural network formalisms is commonly measured by their ability to distinguish graphs. For many formalisms, the k-dimensional Weisfeiler-Leman (k-WL) graph isomorphism test is used as a yardstick. In this paper we consider the expressive power of kth-order invariant (linear) graph networks (k-IGNs). It is known that k-IGNs are expressive enough to simulate k-WL. This means that for any two graphs that can be distinguished by k-WL, one can find a k-IGN which also distinguishes those graphs. The question remains whether k-IGNs can distinguish more graphs than k-WL. This was recently shown to be false for k=2. Here, we generalise this result to arbitrary k. In other words, we show that k-IGNs are bounded in expressive power by k-WL. This implies that k-IGNs and k-WL are equally powerful in distinguishing graphs.

Citations (35)

Summary

We haven't generated a summary for this paper yet.