Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending the Design Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman (2306.03266v3)

Published 5 Jun 2023 in cs.LG and stat.ML

Abstract: Message passing neural networks (MPNNs) have emerged as the most popular framework of graph neural networks (GNNs) in recent years. However, their expressive power is limited by the 1-dimensional Weisfeiler-Lehman (1-WL) test. Some works are inspired by $k$-WL/FWL (Folklore WL) and design the corresponding neural versions. Despite the high expressive power, there are serious limitations in this line of research. In particular, (1) $k$-WL/FWL requires at least $O(nk)$ space complexity, which is impractical for large graphs even when $k=3$; (2) The design space of $k$-WL/FWL is rigid, with the only adjustable hyper-parameter being $k$. To tackle the first limitation, we propose an extension, $(k,t)$-FWL. We theoretically prove that even if we fix the space complexity to $O(nk)$ (for any $k\geq 2$) in $(k,t)$-FWL, we can construct an expressiveness hierarchy up to solving the graph isomorphism problem. To tackle the second problem, we propose $k$-FWL+, which considers any equivariant set as neighbors instead of all nodes, thereby greatly expanding the design space of $k$-FWL. Combining these two modifications results in a flexible and powerful framework $(k,t)$-FWL+. We demonstrate $(k,t)$-FWL+ can implement most existing models with matching expressiveness. We then introduce an instance of $(k,t)$-FWL+ called Neighborhood$2$-FWL (N$2$-FWL), which is practically and theoretically sound. We prove that N$2$-FWL is no less powerful than 3-WL, and can encode many substructures while only requiring $O(n2)$ space. Finally, we design its neural version named N$2$-GNN and evaluate its performance on various tasks. N$2$-GNN achieves record-breaking results on ZINC-Subset (0.059), outperforming previous SOTA results by 10.6%. Moreover, N$2$-GNN achieves new SOTA results on the BREC dataset (71.8%) among all existing high-expressive GNN methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.