Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Plane augmentation of plane graphs to meet parity constraints (2007.11863v1)

Published 23 Jul 2020 in cs.CG

Abstract: A plane topological graph $G=(V,E)$ is a graph drawn in the plane whose vertices are points in the plane and whose edges are simple curves that do not intersect, except at their endpoints. Given a plane topological graph $G=(V,E)$ and a set $C_G$ of parity constraints, in which every vertex has assigned a parity constraint on its degree, either even or odd, we say that $G$ is \emph{topologically augmentable} to meet $C_G$ if there exits a plane topological graph $H$ on the same set of vertices, such that $G$ and $H$ are edge-disjoint and their union is a plane topological graph that meets all parity constraints. In this paper, we prove that the problem of deciding if a plane topological graph is topologically augmentable to meet parity constraints is $\mathcal{NP}$-complete, even if the set of vertices that must change their parities is $V$ or the set of vertices with odd degree. In particular, deciding if a plane topological graph can be augmented to a Eulerian plane topological graph is $\mathcal{NP}$-complete. Analogous complexity results are obtained, when the augmentation must be done by a plane topological perfect matching between the vertices not meeting their parities. We extend these hardness results to planar graphs, when the augmented graph must be planar, and to plane geometric graphs (plane topological graphs whose edges are straight-line segments). In addition, when it is required that the augmentation is made by a plane geometric perfect matching between the vertices not meeting their parities, we also prove that this augmentation problem is $\mathcal{NP}$-complete for plane geometric trees and paths. For the particular family of maximal outerplane graphs, we characterize maximal outerplane graphs that are topological augmentable to satisfy a set of parity constraints.

Summary

We haven't generated a summary for this paper yet.