Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Plane Subgraphs of Complete Topological Drawings (2209.03072v1)

Published 7 Sep 2022 in cs.CG

Abstract: Topological drawings are representations of graphs in the plane, where vertices are represented by points, and edges by simple curves connecting the points. A drawing is simple if two edges intersect at most in a single point, either at a common endpoint or at a proper crossing. In this paper we study properties of maximal plane subgraphs of simple drawings $D_n$ of the complete graph $K_n$ on $n$ vertices. Our main structural result is that maximal plane subgraphs are 2-connected and what we call essentially 3-edge-connected. Besides, any maximal plane subgraph contains at least $\lceil 3n/2 \rceil$ edges. We also address the problem of obtaining a plane subgraph of $D_n$ with the maximum number of edges, proving that this problem is NP-complete. However, given a plane spanning connected subgraph of $D_n$, a maximum plane augmentation of this subgraph can be found in $O(n3)$ time. As a side result, we also show that the problem of finding a largest compatible plane straight-line graph of two labeled point sets is NP-complete.

Citations (8)

Summary

We haven't generated a summary for this paper yet.