Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modular and Submodular Optimization with Multiple Knapsack Constraints via Fractional Grouping (2007.10470v3)

Published 20 Jul 2020 in cs.DS

Abstract: A multiple knapsack constraint over a set of items is defined by a set of bins of arbitrary capacities, and a weight for each of the items. An assignment for the constraint is an allocation of subsets of items to the bins which adheres to bin capacities. In this paper we present a unified algorithm that yields efficient approximations for a wide class of submodular and modular optimization problems involving multiple knapsack constraints. One notable example is a polynomial time approximation scheme for Multiple-Choice Multiple Knapsack, improving upon the best known ratio of $2$. Another example is Non-monotone Submodular Multiple Knapsack, for which we obtain a $(0.385-\varepsilon)$-approximation, matching the best known ratio for a single knapsack constraint. The robustness of our algorithm is achieved by applying a novel fractional variant of the classical linear grouping technique, which is of independent interest.

Citations (6)

Summary

We haven't generated a summary for this paper yet.