Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Pointwise Submodularity: Non-Monotone Adaptive Submodular Maximization subject to Knapsack and $k$-System Constraints (2104.04853v4)

Published 10 Apr 2021 in cs.DS and cs.LG

Abstract: In this paper, we study the non-monotone adaptive submodular maximization problem subject to a knapsack and a $k$-system constraints. The input of our problem is a set of items, where each item has a particular state drawn from a known prior distribution. However, the state of an item is initially unknown, one must select an item in order to reveal the state of that item. There is a utility function which is defined over items and states. Our objective is to sequentially select a group of items to maximize the expected utility. Although the cardinality-constrained non-monotone adaptive submodular maximization has been well studied in the literature, whether there exists a constant approximation solution for the knapsack-constrained or $k$-system constrained adaptive submodular maximization problem remains an open problem. It fact, it has only been settled given the additional assumption of pointwise submodularity. In this paper, we remove the common assumption on pointwise submodularity and propose the first constant approximation solutions for both cases. Inspired by two recent studies on non-monotone adaptive submodular maximization, we develop a sampling-based randomized algorithm that achieves a $\frac{1}{10}$ approximation for the case of a knapsack constraint and that achieves a $\frac{1}{2k+4}$ approximation ratio for the case of a $k$-system constraint.

Citations (12)

Summary

We haven't generated a summary for this paper yet.