Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Algebras of convolution type operators with continuous data do not always contain all rank one operators (2007.10266v2)

Published 15 Jul 2020 in math.FA

Abstract: Let $X(\mathbb{R})$ be a separable Banach function space such that the Hardy-Littlewood maximal operator is bounded $X(\mathbb{R})$ and on its associate space $X'(\mathbb{R})$. The algebra $C_X(\dot{\mathbb{R}})$ of continuous Fourier multipliers on $X(\mathbb{R})$ is defined as the closure of the set of continuous functions of bounded variation on $\dot{\mathbb{R}}=\mathbb{R}\cup{\infty}$ with respect to the multiplier norm. It was proved by C. Fernandes, Yu. Karlovich and the first author \cite{FKK19} that if the space $X(\mathbb{R})$ is reflexive, then the ideal of compact operators is contained in the Banach algebra $\mathcal{A}{X(\mathbb{R})}$ generated by all multiplication operators $aI$ by continuous functions $a\in C(\dot{\mathbb{R}})$ and by all Fourier convolution operators $W0(b)$ with symbols $b\in C_X(\dot{\mathbb{R}})$. We show that there are separable and non-reflexive Banach function spaces $X(\mathbb{R})$ such that the algebra $\mathcal{A}{X(\mathbb{R})}$ does not contain all rank one operators. In particular, this happens in the case of the Lorentz spaces $L{p,1}(\mathbb{R})$ with $1<p<\infty$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.