Hardy's inequalities in finite dimensional Hilbert spaces (2007.10073v1)
Abstract: We study the behaviour of the smallest possible constants $d_n$ and $c_n$ in Hardy's inequalities $$ \sum_{k=1}{n}\Big(\frac{1}{k}\sum_{j=1}{k}a_j\Big)2\leq d_n\,\sum_{k=1}{n}a_k2, \qquad (a_1,\ldots,a_n) \in \mathbb{R}n $$ and $$ \int_{0}{\infty}\Bigg(\frac{1}{x}\int\limits_{0}{x}f(t)\,dt\Bigg)2 dx \leq c_n \int_{0}{\infty} f2(x)\,dx, \ \ f\in \mathcal{H}_n, $$ for the finite dimensional spaces $\mathbb{R}n$ and $\mathcal{H}_n:={f\,:\, \int_0x f(t) dt =e{-x/2}\,p(x)\ :\ p\in \mathcal{P}_n, p(0)=0}$, where $\mathcal{P}_n$ is the set of real-valued algebraic polynomials of degree not exceeding $n$. The constants $d_n$ and $c_n$ are identified as the smallest eigenvalues of certain Jacobi matrices and the two-sided estimates for $d_n$ and $c_n$ of the form $$ 4-\frac{c}{\ln n}< d_n, c_n<4-\frac{c}{\ln2 n}\,,\qquad c>0\, $$ are established.