Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Markov $L_2$-inequality with the Laguerre weight (1705.03824v1)

Published 10 May 2017 in math.CA

Abstract: Let $w_\alpha(t) := t{\alpha}\,e{-t}$, where $\alpha > -1$, be the Laguerre weight function, and let $|\cdot|{w\alpha}$ be the associated $L_2$-norm, $$ |f|{w\alpha} = \left{\int_{0}{\infty} |f(x)|2 w_\alpha(x)\,dx\right}{1/2}\,. $$ By $\mathcal{P}n$ we denote the set of algebraic polynomials of degree $\le n$. We study the best constant $c_n(\alpha)$ in the Markov inequality in this norm $$ |p_n'|{w_\alpha} \le c_n(\alpha) |p_n|{w\alpha}\,,\qquad p_n \in \mathcal{P}n\,, $$ namely the constant $$ c_n(\alpha) := \sup{p_n \in \mathcal{P}n} \frac{|p_n'|{w_\alpha}}{|p_n|{w\alpha}}\,. $$ We derive explicit lower and upper bounds for the Markov constant $c_n(\alpha)$, as well as for the asymptotic Markov constant $$ c(\alpha)=\lim_{n\rightarrow\infty}\frac{c_n(\alpha)}{n}\,. $$

Summary

We haven't generated a summary for this paper yet.