Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An ergodic averaging method to differentiate covariant Lyapunov vectors (2007.08297v5)

Published 16 Jul 2020 in nlin.CD, math-ph, math.DS, and math.MP

Abstract: Covariant Lyapunov vectors or CLVs span the expanding and contracting directions of perturbations along trajectories in a chaotic dynamical system. Due to efficient algorithms to compute them that only utilize trajectory information, they have been widely applied across scientific disciplines, principally for sensitivity analysis and predictions under uncertainty. In this paper, we develop a numerical method to compute the directional derivatives of CLVs along their own directions. Similar to the computation of CLVs, the present method for their derivatives is iterative and analogously uses the second-order derivative of the chaotic map along trajectories, in addition to the Jacobian. We validate the new method on a super-contracting Smale-Williams Solenoid attractor. We also demonstrate the algorithm on several other examples including smoothly perturbed Arnold Cat maps, and the Lorenz attractor, obtaining visualizations of the curvature of each attractor. Furthermore, we reveal a fundamental connection of the CLV self-derivatives with a statistical linear response formula.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.