Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Two-dimensional conformal field theory, full vertex algebra and current-current deformation (2007.07327v4)

Published 14 Jul 2020 in math.QA, math-ph, and math.MP

Abstract: The main purpose of this paper is a mathematical construction of a non-perturbative deformation of a two-dimensional conformal field theory. We introduce a notion of a full vertex algebra which formulates a compact two-dimensional conformal field theory. Then, we construct a deformation family of a full vertex algebra which serves as a current-current deformation of conformal field theory in physics. The parameter space of the deformation is expressed as a double coset of an orthogonal group, a quotient of an orthogonal Grassmannian. As an application, we consider a deformation of chiral conformal field theories, vertex operator algebras. A current-current deformation of a "vertex operator algebra" may produce new vertex operator algebras. We give a formula for counting the number of the isomorphic classes of vertex operator algebras obtained in this way. We demonstrate it for some holomorphic vertex operator algebra of central charge $24$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube