Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Financial Time Series using LSTM with Trainable Initial Hidden States (2007.06848v1)

Published 14 Jul 2020 in q-fin.ST, cs.LG, and q-fin.PM

Abstract: Extracting previously unknown patterns and information in time series is central to many real-world applications. In this study, we introduce a novel approach to modeling financial time series using a deep learning model. We use a Long Short-Term Memory (LSTM) network equipped with the trainable initial hidden states. By learning to reconstruct time series, the proposed model can represent high-dimensional time series data with its parameters. An experiment with the Korean stock market data showed that the model was able to capture the relative similarity between a large number of stock prices in its latent space. Besides, the model was also able to predict the future stock trends from the latent space. The proposed method can help to identify relationships among many time series, and it could be applied to financial applications, such as optimizing the investment portfolios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jungsik Hwang (7 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.