Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Financial Data Visualization for Investment Decision-Making (2403.18822v1)

Published 9 Dec 2023 in q-fin.TR and cs.LG

Abstract: Navigating the intricate landscape of financial markets requires adept forecasting of stock price movements. This paper delves into the potential of Long Short-Term Memory (LSTM) networks for predicting stock dynamics, with a focus on discerning nuanced rise and fall patterns. Leveraging a dataset from the New York Stock Exchange (NYSE), the study incorporates multiple features to enhance LSTM's capacity in capturing complex patterns. Visualization of key attributes, such as opening, closing, low, and high prices, aids in unraveling subtle distinctions crucial for comprehensive market understanding. The meticulously crafted LSTM input structure, inspired by established guidelines, incorporates both price and volume attributes over a 25-day time step, enabling the model to capture temporal intricacies. A comprehensive methodology, including hyperparameter tuning with Grid Search, Early Stopping, and Callback mechanisms, leads to a remarkable 53% improvement in predictive accuracy. The study concludes with insights into model robustness, contributions to financial forecasting literature, and a roadmap for real-time stock market prediction. The amalgamation of LSTM networks, strategic hyperparameter tuning, and informed feature selection presents a potent framework for advancing the accuracy of stock price predictions, contributing substantively to financial time series forecasting discourse.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Nisarg Patel (8 papers)
  2. Harmit Shah (1 paper)
  3. Kishan Mewada (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com